Ini adalah pembungkus Python untuk TA-LIB berdasarkan Cython dan bukan SWIG. Dari homepage: TA-Lib banyak digunakan oleh pengembang perangkat lunak perdagangan yang membutuhkan untuk melakukan analisis teknis data pasar keuangan. Meliputi 150 indikator seperti ADX, MACD, RSI, Stochastic, Bollinger Bands, dll. Pengenalan pola candlestick Open source API untuk CC, Java, Perl, Python dan 100 Managed Protokol Python asli menggunakan SWIG yang sayangnya sulit dipasang dan dipasang. Seefisien mungkin. Oleh karena itu proyek ini menggunakan Cython dan Numpy untuk secara efisien dan bersih mengikat hasil produksi TA-Lib 2-4 kali lebih cepat dari pada antarmuka SWIG. Instal TA-Lib atau Baca Dokumen Mirip dengan TA-Lib, antarmuka fungsi menyediakan pembungkus ringan dari indikator TA-Lib yang terpapar. Setiap fungsi mengembalikan sebuah array output dan memiliki nilai default untuk parameter mereka, kecuali ditentukan sebagai argumen kata kunci. Biasanya, fungsi ini akan memiliki periode tampilan awal (jumlah observasi yang diperlukan sebelum keluaran dihasilkan) diatur ke NaN. Semua contoh berikut menggunakan fungsi API: Hitunglah rata-rata pergerakan sederhana dari harga penutupan: Menghitung pita bollinger, dengan rata-rata pergerakan tiga eksponensial: Menghitung momentum harga penutupan, dengan jangka waktu 5: API Ringkasan Cepat Jika Anda Sudah terbiasa menggunakan fungsi API, sebaiknya Anda merasa betah menggunakan API abstrak. Setiap fungsi mengambil masukan yang sama, dilewatkan sebagai kamus array Numpy: Fungsi dapat diimpor secara langsung atau instantiated dengan nama: Dari sana, fungsi pemanggilan pada dasarnya sama dengan fungsi API: Pelajari lebih lanjut penggunaan TA-Lib di sini. . Indikator yang Didukung Kami dapat menunjukkan semua fungsi TA yang didukung oleh TA-Lib, baik sebagai daftar atau sebagai dikte berdasarkan kelompok (misalnya Studi Tumpang Tindih, Indikator Momentum, dll): Kelompok FungsiModer Rata-rata Sistem Crossover dengan Filter RSI Sistem yang sederhana berdiri dengan baik Kemungkinan berhasil dengan tidak menjadi terlalu kurva-fit. Namun, menambahkan filter sederhana ke sistem yang kuat dapat menjadi cara yang bagus untuk meningkatkan profitabilitasnya, asalkan Anda juga menganalisis bagaimana hal itu dapat mengubah risiko atau bias yang ada dalam sistem. Sistem Crossover Rata-rata Moving dengan RSI Filter adalah contoh yang bagus untuk ini. Tentang Sistem Sistem ini menggunakan 30 unit SMA untuk fast average dan 100 unit SMA untuk rata-rata yang lambat. Karena moving average yang cepat adalah sedikit lebih lambat dari SPY 10100 Long Only Moving Average Crossover System. Itu harus menghasilkan lebih sedikit sinyal perdagangan total. Ini akan menarik untuk melihat apakah ini mengarah pada tingkat kemenangan yang lebih tinggi. Sistem juga menggunakan indikator RSI sebagai filter. Ini dirancang untuk menjaga agar sistem keluar dari perdagangan di pasar yang tidak tren, yang juga harus mengarah pada tingkat kemenangan yang lebih tinggi. Sistem ini memasuki posisi yang panjang ketika 30 unit SMA melintasi di atas 100 unit SMA jika RSI berada di atas 50. Ia memasuki posisi pendek ketika 30 unit SMA melintasi di bawah 100 unit SMA jika RSI berada di bawah 50. Sistem keluar Posisi panjang jika 30 unit SMA melintasi kembali di bawah 100 unit SMA, atau jika RSI turun di bawah 30. Ini keluar dari posisi pendek jika 30 unit SMA melintasi kembali di atas 100 unit SMA, atau jika RSI naik di atas 70. Ini juga menerapkan trailing stop yang didasarkan pada volatilitas pasar dan menetapkan pemberhentian awal di posisi terendah terakhir untuk posisi long atau tertinggi baru-baru ini untuk posisi short. Bagan FXI harian, EURUSD ETF, menunjukkan peraturan sistem yang berlaku 30 unit SMA melintasi di atas 100 unit SMA RSI gt 50 30 unit SMA yang berada di bawah 100 unit SMA RSI lt 50 30 unit SMA yang berada di bawah 100 unit SMA, atau RSI turun di bawah 30, atau Trailing Stop terkena, atau Initial Stop terkena Exit Short Ketika: 30 unit SMA melintasi di atas SMA 100 unit, atau RSI naik di atas 70, atau Trailing Stop terpukul, atau Initial Stop terkena Backtesting Results Hasil backtesting I Yang ditemukan untuk sistem ini berasal dari pasar Euro vs US Dollar dari tahun 2004 sampai 2011 dengan menggunakan periode waktu harian. Selama tujuh tahun itu, sistem hanya membuat 14 perdagangan, jadi pasti disaring sebagian besar aksi. Pertanyaannya adalah apakah atau tidak itu menyaring perdagangan bagus atau yang buruk. Dari 14 perdagangan tersebut, delapan diantaranya adalah pemenang dan enam diantaranya pecundang. Itu memberi sistem angka kemenangan 57, yang kita tahu bisa diperdagangkan dengan sangat sukses sehingga tingkat keuntungan juga kuat. Laporan backtesting untuk sistem forex menggunakan stat yang disebut faktor keuntungan. Jumlah ini dihitung dengan membagi laba kotor dengan rugi kotor. Ini memberi kita keuntungan rata-rata yang bisa kita harapkan per unit risiko. Hasil untuk laporan backtesting ini memberi sistem ini faktor keuntungan 3,61. Ini berarti bahwa dalam jangka panjang, sistem ini akan memberikan hasil yang positif. Sebagai perbandingan, Triple Moving Average Crossover System hanya memiliki faktor keuntungan 1,10, sehingga Moving Average Crossover System dengan RSI cenderung tiga kali lebih menguntungkan. Ini berarti bahwa dengan menggunakan jumlah yang lebih besar untuk moving average yang cepat dan menambahkan filter RSI harus menyaring beberapa perdagangan yang kurang produktif. Jumlah ini lebih jauh didukung oleh fakta bahwa rata-rata keuntungannya dua kali lebih besar dari rata-rata kerugian. Namun, terlepas dari rasio positif ini, sistem tersebut mengalami penarikan maksimal hampir 40. Ukuran Sampel Fakta bahwa sistem ini memberikan sedikit sekali sinyal adalah kekuatan terbesar dan kelemahan terbesarnya. Menempatkan lebih sedikit perdagangan dan menahan mereka untuk jangka waktu yang lebih lama akan menjaga biaya transaksi menjadi faktor. Namun, menganalisa 14 perdagangan yang terjadi selama tujuh tahun bisa mengakibatkan hasilnya miring karena ukuran sampelnya kecil. Saya penasaran bagaimana sistem ini akan dilakukan jika diperdagangkan di selusin pasang mata uang yang berbeda selama periode waktu yang sama. Selanjutnya, bagaimana hal itu dilakukan jika backtest kembali 50 tahun atau menguji sistem pada indeks saham atau komoditas. Ada statistik yang jelas positif untuk menjamin eksplorasi lebih lanjut dari sistem ini, namun akan sangat bodoh untuk menukar uang riil berdasarkan hasil 14 perdagangan. Contoh Perdagangan Contoh sistem kerja ini dapat dilihat pada grafik FXI saat ini. Sekitar tanggal 18 Maret tahun ini, SMA 30 hari melintas di bawah SMA 100 hari. Pada saat itu, RSI juga di bawah 50. Ini akan memicu posisi short di suatu tempat di bawah 36. Perhentian awal mungkin akan terjadi di atas level tertinggi baru-baru ini di 38. Pada pertengahan April, harga turun menjadi 34 dan Kita pasti telah menikmati keuntungan yang bagus. Harga kemudian rebound untuk hampir memicu awal kami berhenti di 38 di awal Mei sebelum menabrak hampir semua jalan sampai 30 pada akhir Juni. Ini telah bangkit kembali ke kisaran 34. Tidak ada gunanya salah satu tindakan ini 30 hari SMA melintas di atas SMA 100 hari, dan RSI tetap di bawah 70. Oleh karena itu, keduanya tidak akan memicu jalan keluar. Sementara harga mendekati pemberhentian awal kami, tidak sampai ke sana, jadi itu juga akan membuat kami tetap dalam perdagangan. Satu-satunya hal yang bisa menyebabkan jalan keluar adalah trailing stop, yang akan bergantung pada seberapa banyak volatilitas yang kita inginkan. Masih dini untuk mengatakan apakah kita ingin dihentikan atau tidak. Tentang Indikator RSI Indikator RSI dikembangkan oleh J. Welles Wilder dan ditampilkan dalam bukunya tahun 1978, New Concepts in Technical Trading Systems. Ini adalah indikator momentum yang berosilasi antara nol dan 100, yang menunjukkan kecepatan dan perubahan harga. Banyak trader momentum menggunakan RSI sebagai indikator overboughtoversold. RSI dihitung dengan perhitungan pertama RS, yang merupakan kenaikan rata-rata dari n periode terakhir dibagi dengan rata-rata kehilangan n periode terakhir. Nilai n umumnya 14 hari. RS (Average Gain) (Rugi Rata-rata) Setelah RS dihitung, persamaan berikut digunakan untuk membuat nilai tersebut menjadi indikator osilasi: RSI 100 8211 100 (1 RS) Ini akan memberi kita nilai antara nol dan 100. Nilai apapun di atas 70 umumnya dianggap overbought, dan setiap nilai di bawah 30 dianggap oversold. Namun, karena sistem ini merupakan tren sistem berikut, overbought dan oversold tidak memiliki konotasi negatif mereka yang biasa. Saat menggunakan m. a. Strategi yang Anda ambil dalam mempertimbangkan tingkat bunga mata uang juga. Anda menggunakan dolar sebagai mata uang dasar Anda Saya telah menukar saham sebelumnya tapi tidak pernah forex, dan saya mencoba untuk membangun sesuatu dengan python, sebuah forex menggunakan 8gt20 long8lt20 short , Tapi saya masih bertanya-tanya apakah saya perlu memasukkan tingkat bunga setiap mata uang dalam analisis untuk pampl tersebut. Terima kasih atas waktu Anda. Jorge Medellin jormoriagmail PS. Saya tahu bahwa lelucon itu sama pentingnya dengan kuda, jadi dalam kasus ini AKU BERARTI FOREX sebagai mata uang yang bertentangan dengan kontrak futures atau forward. Terima kasih atas catatan anda Tingkat bunga mentah itu sendiri bukanlah hal yang penting. Bagaimanapun, kami adalah pasangan perdagangan. Mata uang yang kuat akan menjadi satu dengan harapan tertinggi untuk kenaikan suku bunga. Saya tidak akan memperhatikan suku bunga sangat banyak, setidaknya tidak pada saat ini. Pedagang peduli lebih jauh tentang pelonggaran kuantitatif daripada tingkat suku bunga saat ini. QE jauh lebih penting dan berbahaya. Apa itu UNIT SMA 30 unit SMA 100 unit SMA Apakah maksud anda adalah Periode Rata-rata Bergerak Sederhana Ada orang lain Ya, itu adalah Periode SMA. Periode pertama SMA adalah 10. Periode kedua SMA adalah 100. Saat mereka menyeberang, Anda mendapat sinyal jika RSI berada di atas 50. Hai Shaun, saya ingin mulai dengan mengucapkan terima kasih atas blog dan artikel Anda yang sangat informatif. Saya harap saya bisa membantu trader lain di masa depan seperti Anda. Saya telah membangun dan menggunakan indikator momentum tersaring sebagai filter dalam strategi lain di akun demo. Saya tidak mempertimbangkan untuk menggunakan RSI karena saya tidak suka menggunakan indikator yang pada dasarnya menunjukkan hal yang sama (kebanyakan indikator mencerminkan momentumnya dalam satu cara atau lainnya sementara yang lain tidak memiliki penjelasan rasional). Namun, setelah membaca artikel di atas, saya mengganti indikator momentum saya dengan RSI. Hasilnya benar-benar menjanjikan dengan cambuk yang jauh lebih sedikit. Saya akan mencoba mencari waktu untuk menulis EA dan strategi backtest. Mengapa menurut Anda ada penarikan yang sangat besar Apakah itu melekat pada strategi crossover MA Atau apakah itu disebabkan oleh RSI Lebih dari itu? Saya pribadi tidak menyukai RSI. Saya pasti akan melakukan perbandingan rata-rata bergerak untuk Anda di Quantilator juga. Ini adalah cara termudah dan paling obyektif untuk memilih strategi yang terpisah. Selamat datang di statsmodels Dokumentasi Statistik Statsmodels8217 adalah modul Python yang menyediakan kelas dan fungsi untuk estimasi berbagai model statistik, juga untuk melakukan uji statistik, dan eksplorasi data statistik. Daftar statistik hasil yang ekstensif dapat digunakan untuk setiap estimator. Hasilnya diuji terhadap paket statistik yang ada untuk memastikannya benar. Paket dilepaskan di bawah lisensi open source Modified BSD (3-clause). Dokumentasi online di-host di sourceforge. Contoh Minimal Sejak versi 0.5.0 dari statsmodels. Anda bisa menggunakan formula bergaya R bersama dengan data pandas agar sesuai dengan model Anda. Berikut adalah contoh sederhana menggunakan kuadrat terkecil biasa: Anda juga bisa menggunakan array numpy dan bukan formula: Silahkan lihat dir (hasil) untuk melihat hasil yang tersedia. Atribut dijelaskan di results. doc dan metode hasil memiliki docstrings sendiri. Dokumentasi Dasar Informasi tentang struktur dan pengembangan statsmodels:
No comments:
Post a Comment